2 edition of **Step load moving with superseismic velocity on the surface of an elastic-plastic half-space** found in the catalog.

Step load moving with superseismic velocity on the surface of an elastic-plastic half-space

Alva T. Matthews

- 279 Want to read
- 2 Currently reading

Published
**1966**
in [New York]
.

Written in English

- Elastic solids.,
- Elastic waves.,
- Differential equations -- Data processing.

**Edition Notes**

Statement | by Alva T. Matthews. |

Classifications | |
---|---|

LC Classifications | QA935 .M375 |

The Physical Object | |

Pagination | ix, 74 p., 75-115 l. |

Number of Pages | 115 |

ID Numbers | |

Open Library | OL5715279M |

LC Control Number | 70294684 |

Contact mechanics K. L. Johnson This treatise is concerned with the stresses and deformation of solid bodies in contact with each other, along curved surfaces which touch initially at a point or along a line. It means that a system of mass m kg while moving with a velocity V1 m/s, does 1/2mV12 joules of work before coming to rest. So in this state of motion, the system is said to have a kinetic energy given as; K.E. = 1/2mv12 N.m However, when the mass undergoes a change in its velocity from velocity V1 to V2, the change in kinetic energy of the.

For an inline slider-crank mechanism, the length of the crank and connecting rod are 3 m and 4 m, respectively. At the instant when the connecting rod is perpendicular to the crank, if the velocity of the slider is 1 m/s, the magnitude of angular velocity (upto 3 . 3 The velocity at B is given as: (drB/dt) = (drA/dt) + (drB/A/dt)or vB = vA + vB/A RELATIVE MOTION ANALYSIS: VELOCITY = + Since the body is taken as rotating about A, vB/A = drB/A/dt = ωx rB/A Here ωwill only have a k component since the axis of rotation is perpendicular to the plane of Size: KB.

The impact of a rigid sphere on a homogeneous, isotropic elastic half-space in the absence of friction and adhesion is considered. The influence of the superseismic stage immediately following the moment of first contact upon the impact process is investigated in the frame of the Hertzian impact theory. The first order asymptotic approximation for the contact force in a three-dimensional. Problem The horizontal surface is smooth. The N box is at rest when the constant force F is applied. Two seconds later, the box is moving to the right at 20 m/s. Determine F. F 20 Solution: We use one governing equation and one kinematic relation F x: F cos20 = 30 N. 2 a, v = (20 m/s) = a(2s). Solving, we ﬁnd a = 10 m/s2, Size: 4MB.

You might also like

Hydrological data--Norden: Sagelva, representative basin, Norway

Hydrological data--Norden: Sagelva, representative basin, Norway

Project profile for the cultivation of granulated sugar from sugar palm (nipah) in Serui of Kabupaten Yapen Waropen.

Project profile for the cultivation of granulated sugar from sugar palm (nipah) in Serui of Kabupaten Yapen Waropen.

Conamara

Conamara

Averages

Averages

Labour and industrial relations course directory

Labour and industrial relations course directory

Crafts and craftsmen in the heart of England.

Crafts and craftsmen in the heart of England.

Diseases of turkeys

Diseases of turkeys

Haemorrhagic small-pox

Haemorrhagic small-pox

Handy dictionary of the Latin and English languages.

Handy dictionary of the Latin and English languages.

Social Work and Global Mental Health

Social Work and Global Mental Health

Family law and practice

Family law and practice

Nazi Germany

Nazi Germany

ABCs of pioneer Valley,Western Massachusetts.

ABCs of pioneer Valley,Western Massachusetts.

The plane strain problem of a step load moving with uniform superseismic velocityV >c p on the surface of a half-space is considered for an elastic-plastic material obeying the von Mises Cited by: 2.

The plane strain problem of a step load moving with uniform superseismic velocityV >cp on the surface of a half-space is considered for an elastic-pla.

The two-dimensional steady-state problem of the effect of a step pressure traveling with superseismic velocity on the surface of a half-space is treated for an elastic-plastic material. The plasticity condition selected is a function of the first and second invariants of the stress tensor, and is suitable for a granular medium where inelastic deformations are due to internal slip subject to Coulomb by: 1.

Volume 4, Issue 2, FebruaryPages Moving step load on the surface of a half-space of granular material * *. step load, the y- and z-axes are normal to the surface in and out of the plane of the figure, respectively.

The analysis considers the case of plane strain, cz = 0, when the velocity V of the step load is superseismic, i.e. larger than the largest elastic or plastic wave velocity, which is the one of elastic P-waves in the material. The two dimensional steady-state problem of the effect of a step pressure traveling with superseismic velocity on the surface of a half-space is treated for an elastic-plastic material.

The plasticity condition selected is suitable for a granular medium where inelastic deformations are due to internal slip subject to Cbulomb friction.

The plane strain problem of a step load moving with uniform superseismic velocity V > cp on the surface of a half-space is considered for an elastic-plastic material obeying the von Mises yield.

THE EFFECT OF A MOVING LOAD ON A VISCOELASTIC HALF-SPACE (Book) 1 edition published in in English and held by 3 libraries worldwide Abstract: Cole and Huth have studied the effect of a line load moving with constant velocity V along the surface of an elastic half-space.

The present paper treats the equivalent problem for a viscoelastic. Step Load Moving with Superseismic Velocity on the Surface of a Half Space of Granular Material. Strained spiral vortex model for turbulent £ne structure.

Structure and strength of dislocation junctions: An atomic level analysis. Superseismic Loading and Shock Polars: An Example of Fluid-Solid Coupling form solution describing the eﬀect of a step-load. o v er a half plane is provided by The free surface velocity. of a step Dressure, Fig.

1, rrogressing with a superseismic velocity V on the surface of a half-space has been studied for an elastic-plastic material subject to the von Mises yield condition 2 J2 =0 (i) where k is the yield stress in shear and J2 is the invariant 12 1 (2) 2 = sijsij The present report considers the more general problem.

Exponentially Decaying Pressure Pulse Moving With Constant Velocity on the Surface of a Layered Elastic Material (Superseismic Layer, Subseismic Half Space) J. Appl. Mech (March, ) Null-Field Approach for the Multi-inclusion Problem Under Antiplane ShearsCited by: Mass # velocity: the sum of the products of mass and the x-component of velocity is the same before and after the collision: kg1+ m>s2 + kg = kg + kg1+ m>s2.

Experiment 2. Cart a ( kg) moving right at m/s collides with cart B. The paper considers a concentrated point force moving with constant velocity and oscillating with constant frequency in an unbounded homogeneous anisotropic elastic 2D medium. Acknowledgment The research support of the National Science Foundation, Solid Mechanics Program, and of the NSF Materials Research Laboratory at Brown University is gratefully acknowledged.

References [1] H.H. Bleich and A.T. Matthews, "Step load moving with superseismic velocity on the surface of an elastic-plastic half space", Internat. : L.B. Freund, A.S. Douglas. Impact of a rigid sphere moving at constant velocity on elastic homogeneous half-space was analyzed by the finite element method.

Frictionless dynamic contact was modeled with special contact. The ground shock response in the superseismic range of a one megation air burst on a homogeneous half-space of a soil is considered. Each of the three types of models, was fitted to laboratory. The same force F pushes in three different ways on a box moving with a velocity v, as the drawings show.

Rank the work done by the force F in ascending order (smallest first): A. (A, B, C) but in physics the definition of work requires that a force causes a For the next step File Size: KB. An approximate solution is given for the effect of an exponentially decaying pressure pulse traveling with superseismic velocity on the surface of a half-space.

The half-space is an elastic-plastic material of the von Mises type. The effect of a step wave for. mal load moving at constant speed in a straight line over the surface. The results, obtained by Fourier transform methods, are valid for any depth, load speed, or elastic constants and could be used for an evaluation of the subsurface stresses and Size: 2MB.

An approximate solution is given for the effect of an exponentially decaying pressure pulse traveling with superseismic velocity on the surface of a half space. The material of the half space is an elastic-plastic model of a material having internal Coulomb friction.

The yield condition selected may be suitable for a granular material.Figure (3) indicates the half-space with a system of stationary Cartesian coordinates. The x-axis is in the direction of motion of the stop load, the y- and z-axes are normal to the x-axis in and out of the plane of the figure, respectively.

The analysis considers the case of plane strain, Czz a 0, when the velocity V of the step load is larger.[5) the effect of a step load moving with superseismic velocity is determined in A the present report for an elastic-plastic material obeying the von Mises yield condition.

The identical problem, for a yield condition suitable for materials with internal slip subject to Coulomb friction, is concurrently being treated for publication elsewhere (6].File Size: 3MB.